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Modulus and Phase of the Reduced Logarithmic 
Derivative of the Hankel Function 

By Andres Cruz and Javier Sesma 

Abstract. The modulus and phase of the reduced logarithmic derivative of the Hankel function 

zH,I, ' ( z ) IH(1 "( z ) 

for complex variable z and real order v, are investigated. Special attention is paid to the 
location of saddle points and their trajectories as v varies. 

1. Introduction. The solution of the Schrodinger equation with optical potentials, 
like those used to describe the low-energy nucleus-nucleus or hadron-nucleus inter- 
action, is usually obtained by matching the reduced logarithmic derivatives of the 
internal and external wave-functions at the edge of the potential. Inside, the 
wave-function depends on the details of the potential; outside, it is proportional to 
the Hankel function. A good knowledge of the reduced logarithmic derivative of the 
Hankel function 

(1.1) FV(z) =zH(1)t(z)1H(1)(z) 

is of great help both for the speedy approximate solution of the Schrodinger 
equation and for the analysis of singularities of the S matrix. 

The purpose of this paper is to discuss the main features of the modulus and 
phase of F1(z) for complex variable z and real order v. From the recurrence relations 
for the Hankel functions [4, Eq. 9.1.27] 

(1.2,a) H(1)'(z) -H1,)1(z) + (v/z)H,')(z), 

(1.2,b) H(1 1)' (z)H= H z )l lz)- HzH 1) (z) 

and the property [4, Eq. 9.1.6] 

(1.3) H(')(z) exp{igPv}H,()(z), 

it is easy to prove the symmetry of F1(z) with respect to the sign of its order, 

(1.4) ] r(z) = F,(z). 

We need, therefore, to consider only nonnegative values of v in our discussion. 
As is well known, the Hankel function is multivalued in its variable. By using its 

analytic continuation formula [4, Eq. 9.1.37] and the Wronskian relation for Ho')(z) 
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and H(2)(z) [4, Eq. 9.1.17], one obtains 

(1.5) FP(ze1"m) = F,(z) + 4ie-'" sin(mvP)/7 sin(vP)HP()(z)HPl)(ze1"m), 
m integer, 

which shows that FJ(z) is also a multivalued function of z, except in the case of 
half-integer v (physical values of the angular momentum / = - 1/2). 

Symmetries of FJ(z) in the complex z plane can be found by making use of the 
relations [4, Eqs. 9.1.39 and 9.1.40] 

(1.6) H(')(ze' ) = e e-e-1"PH(2)(Z), 

( 1.7) H() (i(z ),for real v, 

from which it follows that 

(1.8) HP(')(ze'1) = e 
- 
1e-' Hp(') (z-) v real. 

This equation allows one to obtain 

(1.9) F(ze'") = F(z) , vreal, 

which relates the moduli and phases of F1(z) at points located symmetrically with 

respect to the vertical axis, but in different Riemann sheets. If the z plane is cut 

along the negative real semiaxis, (1.9) shows that F1(z) takes complex conjugate 
values at symmetrical points of the first and second quadrants of the principal 
branch, -r < arg z s 7. Moreover, F1(z) is real on the positive imaginary semiaxis, 
arg z = 7T/2. For half-integer values of v, FJ(z) is singlevalued and, due to (1.9), 
takes complex conjugate values at points symmetrical with respect to the imaginary 
axis. Of course, F1(z) is then real also on the negative imaginary semiaxis. 

Another symmetry property of FJ(z) can be obtained in the case of 3v being 
integer, v noninteger. From the analytic continuation formula [4, Eq. 9.1.37] for 
H(')(z) and by using (1.7), one obtains 

(1 . 10) F,,(zi2 ) sin(37vT)zH(')'(z) + e -iT>sin(2 vT) ziH(1)'(z) 

sin(3 vT)H(1)(z) + e-'Tp sin(2,vr) Hp')('f) 

that, in the case under consideration, reduces to 

(1.1) F(ze -i2)= F,( z), 3v integer, v noninteger. 

This relation indicates that FJ(z) takes complex conjugate values at symmetrical 
(with respect to the real axis) points of the quadrants -3'r/2 s arg z s -'T and 
-ST S arg z s -'r/2. Consequently, FJ(z) is real on the negative real semiaxis, 
arg z = -7. 

Although our discussion will be limited to the logarithmic derivative of the first 
Hankel function HP()(z), it can be extended to that of the second one, H(2)(Z), 
through the relation 

(1.12) zHz2)'(z)/H(2)(z) = F,(z) , vreal, 

easily obtained from (1.7). 
In Section 2 we study the location of zeros, poles and saddle points of FJ(z). Plots 

of its modulus and phase for several values of v are presented in Section 3. In view of 
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the multivaluedness of F,( z), we cut the complex z plane along the positive 
imaginary semiaxis and restrict our discussion to the Riemann sheet -3'r/2 < arg z 
? 'n/2. 

2. Zeros, Poles and Saddle Points. In the construction of a chart of the modulus 
and phase of F,(z) it is of great aid to know the location of its zeros and poles, where 
the constant-phase lines converge. Obviously, the zeros and poles of F1(z) corre- 
spond to the zeros of H(')'(z) and H(')(z), respectively. These have been extensively 
studied, for real v, in a recent paper [2]. 

Apart from zeros and poles, constant-phase (or modulus) lines do not intersect 
except at the saddle points, where two constant-phase lines (and two constant-mod- 
ulus lines) meet. Saddle points are characterized by the relation 

(2.1) d1p(z)/dz=O, 

that, in view of the differential equation satisfied by F(z), 

(2.2) zdF;(z)/dz + [1V(Z)]2 + Z2 _2 = o, 

is equivalent to 

(2.3) [2(z)]2 = .2 - 2 

We have used this relation to analyze the location of saddle points in the complex z 
plane as a function of the order v. Two infinite sets of saddle points are found, lying 
respectively above (" upper" saddle points) and below ("lower" saddle points) the 
zeros and poles of F(z). In Figure 1 we show the trajectories followed by the saddle 
points as the order v changes through real values. For v = n + 1/2 (n integer) F,(z) 

reduces to a quotient of polynomials and presents only n saddle points of the 
"lower" type. With the exception of these, all saddle points go to infinity as P tends 
to n + 1/2. Their behavior can be deduced from (2.3) by using asymptotic expan- 
sions [4, Eqs. 9.2.7 and 9.2.8] for the Hankel functions and following a procedure 
similar to that used in [2] for the zeros of HP')(z). The real and imaginary parts of 
the saddle points (labelled by the integer s) turn out to satisfy, for the "upper' ones, 

(2.4,a) Xs 7/4-s - (1/2) arg , 

(2.4,b) ys - (1/2) logl, 

(2.4,c) [1 - 4cos2(vP)][4zse1T3/2 + 2v2 + 1/2]/2cos(vP), 

and for the "lower" ones 

(2.5,a) Xs 
- 

qT/4 - s - (1/2) arg 

(2.5 ,b) ys - ( 1/2) log }gI 

(2.5,c) =-[I - 4cos2(v7T)]/[4zsei,/2 + 2v2 + 1/2]2cos(vP). 

These equations do not give explicitly the positions of the saddle points because 

zs x + iys appears also on the right-hand sides. However, they allow a compari- 
son of the location of saddle points with that of zeros, 

(2.6,a) xs 
- 3n/4 - s - (1/2) arg 7, 

(2.6,b) ys - (41/2) log 1 Io (, 

(2.6,c) n =[I -4 COS2( P7)]/2 cos(^q7), 
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and poles, 

(2.7,a) xs 7T/4- s - (1/2) arg ri, 

(2.7,b) ys -(I 1/2) log 1, I l 

of F1(z) [2]. As can be seen, zeros and poles alternate along an almost horizontal 
line, with a separation of approximately r/2 from each zero to neighboring poles. 
The line joining " upper" saddle points is above this zero-pole line and has a small 
negative slope, whereas that for "lower" saddle points is below and presents a small 
positive slope. As v tends to a half-integer, saddle points go to infinity in the 
quadrant -3'r/2 < arg z < -7T, showing a behavior similar to that of poles (zeros) in 

the case of "upper" ("lower") saddle points. As v increases towards n + 1/2, the 
saddle points move almost vertically, tending to infinity along the asymptotes 
x = (-s + n/2 + 1/4)7 in the case of " upper" ones and x = (-s + n/2 - 1/4)7 in 
the case of "lower" ones, the label s being larger than n. All saddle points at infinity 
jump by Aix = 'T/2 as v passes n + 1/2 and go down along the asymptotes 
x = (-s + n/2 + 3/4)7, if "upper", and x = (-s + n/2 + 1/4) r if "lower" saddle 
points. 

Im z 

5- 

0 1 2 

8~ ~ ~ R z 
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Saddle points of the reduced logarithmic derivative of the Hankel function .The trajectories 
followed by the first three pairs of saddle points, as the order v varies from zero through positive values, 
are shown. The z plane represented corresponds to the Riemann sheet -3 T/2 < arg z < qT/2. The dots on 
the trajectories mark the positions of the saddle points at the integer values of v indicated by numbers 
along the trajectories. The arrows correspond to the motion of saddle points along their trajectories with 
increasing v. The trajectories approach asymptotically the dashed straight lines in the top of the drawing. 

It is possible to find analytic expressions giving the location of saddle points for 
values of v' not in the vicinity of a half-integer. A procedure due to Salzer [5] and 
used by Fettis et al. [3] to obtain the saddle points of the complementary error 
function was applied by the present authors [1] in the study of the saddle points of 
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the reduced logarithmic derivative of the Bessel function. As Bessel and Hankel 
functions are solutions of the same differential equation, the analytic expressions 
giving the saddle points of the reduced logarithmic derivative of the Hankel function 
are formally the same as for the Bessel function, namely [1] 

(2.8) z2 = z2 - blt - b2t2 - b3t3 -bt4... 

where t is a variable vanishing at the saddle points, 

(2.9) tF(z) - (v2 - z2)l/2 

and having denoted 

(2.10,a) b= 2g, 

(2.10,b) b2 1 + 2g3/z2, 

(2.10,c) b3 =(4g2/z2)[1 + (g2/3z2)(1 + 2g)], 

(2.10,d) b4= (g/3z2) 

X 15/2 + (g2/z2)[10 + 31g + (g2/z2)(4 + 14g + 12g2)]}, 

with 

(2.11) g (v2 -Z2)/ 2. 

For a very precise determination of the position zs of a certain saddle point, one 
should start with an approximate value z and apply the algorithm (2.8) repeatedly, 
so as to obtain zs with the desired accuracy. 

3. Modulus and Phase Plots. We have represented in Figures 2 to 7 the contour 
lines in the z plane corresponding to constant modulus or constant phase of F,(z) 
for v = 0, 1/3, 1/2, 2/3, 1 and 3/2, respectively. Those lines have been obtained 
numerically by expressing the Hankel function and its derivative in terms of Bessel 
functions, which were computed by means of their ascending series expansions. 
Double precision was used in the summation of the series. Of course, both families 
of modulus and phase lines are orthogonal. 

In the far regions of the z plane the constant-modulus lines resemble cir- 
cumferences, their radial lines being the constant-phase ones. This was to be 
expected if one considered the asymptotic expansions [4, Eqs. 9.2.7 and 9.2.13] of the 
Hankel function and of its derivative. The corresponding approximate expression of 
the reduced logarithmic derivative becomes 

(3.1) F,(z) = iz - 1/2 - i(4v2 - 1)/8z + O(Z-2), 

lzl- o, -n < argz < 2'T, 

which shows that the (large) constant-modulus lines tend to be circumferences, with 
center at the point -i/2, nearly independent of the value of v. Obviously, the 
approximate expression (3.1) is not valid in the region where poles and zeros lie 
about. 

Our study of the behavior of zeros, poles and saddle points, presented in Section 
2, allows us to illustrate the evolution of the modulus and phase lines as v varies. 
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FIGuRuE 2 
Modulus and phase of the reduced logarithmic derivative of the Hankel function of 
order v = 0. The z plane shown corresponds to the Riemann sheet -3'r/2 < arg z 7 T/2. The cut 
along the positive imaginary semiaxis is represented by a solid line. The numbers aside the lines indicate 
the value of the modulus (continuous lines) or the phase in units r/6 (dashed lines). Saddle points are 
indicated by the intersection of their constant-phase lines. 

5 - 

3 ) 

/10 

9 
0 5 

99 
9 

0 

-5 ~ ~ ~~~1 

/ 0 

-15 _10 -5 0 Re z 

FIGuRE 3 
Modulus and phase of the reduced logarithmic derivative of the Hankel function of 
order v = 1/3. All the considerations made in the caption to Figure 2 are valid also here. Notice the 
symmetry with respect to the horizontal semiaxis in the left half-plane. 
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FIGuRE 4 
Modulus and phase of the reduced logarithmic derivative of the Hankel function of 
order v = 1/2. The meaning of the symbols is the same as in Figure 2. As the represented function is 
singlevalued, no cut is needed. Since F172() = i - 1/2, the constant-modulus lines are exactly cir- 
cumferences with center at -i/2, and the constant-phase ones radial straight lines. 
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FIGuRE 5 
Modulus and phase of the reduced logarithmic derivative of the Hankel function of 
order v = 2/3. The comments to Figure 3 are applicable here. 
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FIGURE 6 

Modulus and phase of the reduced loglarithmic derivative of the Hankel function of 
order v 1. The same conventions as in Figure 2 have been adopted. 

Im z 

-15-10 - 0 

-10/2 N 

-5 -/ 

-15 -10 50 5Re z 

FIGpURE 7 

Modulus and phase of the reduced logarithmic derivative of the Hankel function of 
order v = 3/2. As in Figure 4, the function is singlevalued and presents only a finite number of zeros 
and poles. 
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Besides the circumference-like lines mentioned in the preceding paragraph, 
constant-modulus lines appear surrounding zeros and poles and constant-phase lines 
joining them. The set of zeros and poles and the mentioned lines shows the 
appearance of a horizontal "chain". For integer values, n, of v the chain lies just 
below the negative real semiaxis (Figure 2). It moves upwards, remaining horizontal, 
as v increases, crosses the real axis at v = n + 1/3 (Figure 3) and goes to infinity, 
disappearing as v reaches n + 1/2 (Figure 4). As v increases further, the chain, after 
suffering a displacement of 7/2 to the right, comes down from infinity, crosses the 
real axis at v = n + 2/3 (Figure 5) and occupies the position corresponding to 
integer v at v = n + 1 (Figure 6). 
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